SolidRock V1.2.4 For Max 2013 - 2014 Free Download |VERIFIED|
Since 2011 two online, validated exams for fourth-year emergency medicine (EM) students have been available (National EM M4 Exams). In 2013 the National Board of Medical Examiners offered the Advanced Clinical Examination in Emergency Medicine (EM-ACE). All of these exams are now in widespread use; however, there are no data on how they correlate. This study evaluated the correlation between the EM-ACE exam and the National EM M4 Exams. From May 2013 to April 2014 the EM-ACE and one version of the EM M4 exam were administered sequentially to fourth-year EM students at five U.S. medical schools. Data collected included institution, gross and scaled scores and version of the EM M4 exam. We performed Pearson's correlation and random effects linear regression. 305 students took the EM-ACE and versions 1 (V1) or 2 (V2) of the EM M4 exams (281 and 24, respectively) [corrected].The mean percent correct for the exams were as follows: EM-ACE 74.9 (SD-9.82), V1 83.0 (SD-6.39), V2 78.5 (SD-7.70) [corrected]. Pearson's correlation coefficient for the V1/EM-ACE was 0.53 (0.43 scaled) and for the V2/EM-ACE was 0.58 (0.41 scaled) [corrected]. The coefficient of determination for V1/ EM-ACE was 0.73 and for V2/EM-ACE 0.71 (0.65 and .49 for scaled scores) [ERRATUM]. The R-squared values were 0.28 and 0.30 (0.18 and 0.13 scaled), respectively [corrected]. There was significant cluster effect by institution. There was moderate positive correlation of student scores on the EM-ACE exam and the National EM M4 Exams.
SolidRock v1.2.4 for Max 2013 - 2014 free download
Studies have shown a reduction in time-to-CT and improved process measures when EMS personnel notify the ED of a "stroke alert" from the field. However, there are few data on the accuracy of these EMS stroke alerts. The goal of this study was to examine diagnostic test performance of EMS and ED stroke alerts and related process measures. The EMS and ED records of all stroke alerts in a large tertiary ED from August 2013-January 2014 were examined and data abstracted by one trained investigator, with data accuracy confirmed by a second investigator for 15% of cases. Stroke alerts called by EMS prior to ED arrival were compared to stroke alerts called by ED physicians and nurses (for walk-in patients, and patients transported by EMS without EMS stroke alerts). Means SD, medians, unpaired t-tests (for continuous data), and two-tailed Fisher's exact tests (for categorical data) were used. Of 260 consecutive stroke alerts, 129 were EMS stroke alerts, and 131 were ED stroke alerts (70 called by physicians, 61 by nurses). The mean NIH Stroke Scale was higher in the EMS group (8.1 7.6 vs. 3.0 5.0, p
In electron cryo-microscopy (cryo-EM), the electron beam that is used for imaging also causes the sample to move. This motion blurs the images and limits the resolution attainable by single-particle analysis. In a previous Research article (Bai et al., 2013) we showed that correcting for this motion by processing movies from fast direct-electron detectors allowed structure determination to near-atomic resolution from 35,000 ribosome particles. In this Research advance article, we show that an improved movie processing algorithm is applicable to a much wider range of specimens. The new algorithm estimates straight movement tracks by considering multiple particles that are close to each other in the field of view, and models the fall-off of high-resolution information content by radiation damage in a dose-dependent manner. Application of the new algorithm to four data sets illustrates its potential for significantly improving cryo-EM structures, even for particles that are smaller than 200 kDa. Copyright 2014, Scheres.